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Metabolic programming of ovarian angiogenesis and
folliculogenesis by maternal malnutrition during
lactation

Rafaela Veiga Ferreira, M.D., Fl�avia Meireles Gombar, Tatiane da Silva Faria, Ph.D.,
Waldemar Silva Costa, Ph.D., Francisco Jos�e Barcellos Sampaio, Ph.D., and Cristiane da Fonte Ramos, Ph.D.

Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil

Objective: To evaluate whether maternal malnutrition during lactation programs ovarian folliculogenesis and the
expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and its receptors
KDR, Flt-1, and FGFR.
Design: Experimental study.
Setting: University-based research laboratory.
Animal(s): Adult female rats from a urogenital research laboratory.
Intervention(s): Six rat dams randomly assigned to the following groups: control group (C), with free access to
a standard laboratory diet containing 23% protein; and a protein-energy-restricted group (PER), with free access
to an isoenergy and protein-restricted diet containing 8% protein. After weaning, the female pups had free access
to the standard laboratory diet until 90 days of age, when they were sacrificed at the proestrum stage.
Main Outcome Measure(s): Quantification of ovarian follicles, vessels, and expression of growth factors and their
receptors.
Result(s): Maternal malnutrition during lactation caused a significant reduction in the number of primordial
(C ¼ 6.60 � 0.24, PER ¼ 5.20 � 0.20), primary (C ¼ 5.80 � 0.66, PER ¼ 4.00 � 0.31), and Graafian follicles/
section (C ¼ 2.18 � 0.29, PER ¼ 1.08 � 0.37), in KDR (C ¼ 0.22 � 0.04, PER ¼ 0.09 � 0.01), Flt-1 (C ¼ 0.28
� 0.05, PER¼ 0.12� 0.02), and FGFR mRNA expression (C¼ 0.34� 0.05, PER¼ 0.13� 0.05) and in the vessel
density of follicles (C ¼ 17.26 � 2.30, PER ¼ 9.96 � 0.97).
Conclusion(s): Maternal malnutrition during lactation programs the follicular development by a reduction of
VEGF and FGF mRNA receptors expression, probably from a direct action on the follicular development or a re-
duction in vasculature resulting in a decreased delivery of folliculotrophic substances in PER animals. (Fertil
Steril� 2009;-:-–-. �2009 by American Society for Reproductive Medicine.)
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The organs of the female reproductive system undergo cyclic changes follicular development (10, 11). VEGF immunoreactivity in granu-

that are associated with intense growth of new blood vessels (1),
which is very important for follicular development, corpus luteum
formation, and uterine endometrial proliferation during the menstrual
cycle (2, 3). Among the many endothelial regulators, vascular endo-
thelial growth factor (VEGF) and fibroblast growth factor (FGF)
have been characterized as potent promoters of angiogenesis (3–5).

The human VEGF gene is organized into eight exons, and differ-
ential alternative splicing results in the synthesis of multiple VEGF
isoforms of 121, 145, 165, 189, and 206 amino acids (VEGF121,
VEGF145, VEGF165, VEGF189, and VEGF206, respectively)
(6); the corresponding murine forms are shorter by one amino
acid (7). VEGF120 and VEGF164 are expressed in the mammalian
ovary (8, 9) and are associated with follicular angiogenesis during
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losa cells is weak or absent from the primordial to multilayered
stages of primary follicles but increases gradually when follicles dif-
ferentiate into secondary and then into antral follicles (12, 13).
VEGF expression in granulosa cells is associated with thecal vascu-
lature growth during ovarian follicular development (14–16).

The FGF makes up a large family of 23 related polypeptides (17,
18). Basic FGF, also called FGF-2, is a 146–amino acid polypeptide
that is restricted to the oocytes of primordial and primary follicles of
many species, including rats (19), and also restricted to the granulosa
cells of preantral and antral follicles (20, 21). Basic FGF is important
in regulating a wide range of ovarian functions including granulosa
cell mitosis (22–25), differentiation (26), steroidogenesis (27), apo-
ptosis (28), and initialization of follicular development (29).

Both FGFs and VEGFs act through their specific cell surface
tyrosine kinase receptors. The best-characterized VEGF receptors
are VEGFR1 or Flt-1 (Fms-like tyrosine kinase-1) and VEGFR2 or
Flk-1 (fetal liver kinase)/kinase-insert domain receptor (KDR) (6).
Both receptors are located in the endothelial cells of the theca of late
secondary follicles and increase in the theca of tertiary follicles and
decrease in atretic follicles (30). FGFs interact with a family of four
distinct receptors, designated FGFR-1 to -4 (31). FGFR1 is highly
expressed in small microvessels at all stages and in large microvessels,
especially in the late luteal stage of follicular development (32).
Fertility and Sterility� Vol. -, No. -, - 2009 1
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The VEGF synthesis is stimulated by FSH and LH in the granulosa
cells (33–35). The expression of the VEGF164 gene and its receptor
Flk-1 is stimulated by E2 and FSH in bovine granulosa cells, while
VEGF expression is inhibited by P in a dose-dependent way, suggest-
ing a hormone-dependent expression pattern of VEGF isoforms
during follicular development (36, 37). In humans, VEGF and its
receptors are also under gonadotropin control (38). FSH also stimu-
lates the expression of FGF-2 receptors in granulosa cells (19).

Adverse metabolic conditions, such as malnutrition, obesity, an-
orexia nervosa, or intense exercise, are known to be associated with
reduced or abolished reproductive function (39, 40). The concept of
metabolic programming is a permanent change related to a particular
function as a result of some event that occurs during the perinatal
period (41). An early food restriction can change the original pro-
gram of organs, especially those in developmental phases, which
can result in long-term changes in metabolism (42, 43). Malnutrition
in early life is associated with alterations in adulthood, such as type 2
diabetes, hypertension, and cardiovascular disease (41, 44–48),
follicular growth and ovulation rate (49–51), uterus morphology
(52), and fertility (53).

To better understand the follicular development in malnourished
animals, it would be valuable to investigate the mRNA expression
of both VEGF and FGF, their receptors, and their relationship with
E2 serum levels. Furthermore, the effect of malnutrition during lacta-
tion and the possible metabolic programming on these genes has not
yet been studied. We hypothesized that malnutrition during lactation
would cause an ovarian metabolic programming, leading to a perma-
nent reduction in the mRNA expression of both angiogenic factors and
their receptors that are important to a normal follicular development.
MATERIALS AND METHODS
Animals
The handling of animals was approved by the Animal Care and Use Commit-

tee of the Biology Institute of the State University of Rio de Janeiro, which

based their analysis on the Guide for the Care and Use of Laboratory Animals

(54). The study design was approved by the local Ethics Committee for the

care and use of laboratory animals.

We used Wistar rats that were kept in a room with controlled temperature

(25 � 1C) and an artificial dark-light cycle (lights on from 7:00 to 19:00

hours). Virgin female rats aged 3 months were caged with one male rat at

a proportion of 2:1. After mating, determined by the presence of a vaginal

plug, each female was placed in an individual cage with free access to water

and food until delivery.
Experimental Design
After delivery, six pregnant Wistar rats were separated into two groups: the

control group (C), with free access to a standard laboratory diet containing

(in grams per 100 g) 23 protein, 66 carbohydrate, 11 fat, 17,038.7 total energy

(kJ/kg); and a protein-energy-restricted group (PER), with free access to an

isoenergy and protein-restricted diet containing 8% protein. The PER group,

in spite of having free access to diet, consumed about 60% of that consumed

by the control group (55). The protein-restricted diet was prepared at our lab-

oratory by using the control diet (Nuvilab-Nuvital Ltd., Paran�a, Brazil), with

the replacement of part of its protein content with cornstarch. The amount of

the latter was calculated to replace the same energy content of the control

diet. Vitamins and mineral mixtures were formulated to meet the American

Institute of Nutrition AIN-93G recommendation for rodent diets (56). Within

24 hours of birth, excess pups were removed so that only six pups were kept

per dam because it has been shown that this procedure maximizes lactation

performance (57). Malnutrition of the studied rats started at birth, which

was defined as day 0 of lactation (d0), and was ended at weaning (d21). After

weaning, female pups of the same treatment group were housed in groups of

three animals per cage and given unlimited access to food and water until 90
2 Ferreira et al. Maternal diet and ovary programming
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days of age. Then only the animals at the proestrum stage were sacrificed

with a lethal dose of pentobarbital.

To evaluate the nutritional state, food consumption of the offspring was mon-

itored each day from weaning onward, while body weight and linear growth

(nose-tail) were monitored each 5 days from birth until the experiment end.

The blood was collected by cardiac puncture, and the serum was kept at

�20C for subsequent hormonal assessment. Ovaries were excised, dissected,

and weighted. One ovary was kept at �80C for subsequent measurements of

basic fibroblast growth factor (bFGF), VEGF, FGFR, Flt-1, and KDR tran-

scripts by reverse transcriptase–polymerase chain reaction (RT-PCR). The

other ovary was paraffin embedded, sectioned at 5-mm thickness, and processed

by routine histological analyses. Some samples were stained with

hematoxylin-eosin to confirm tissue integrity.
Morphologic Classification of Follicles
Paraffin sections of 5 mm from the left ovary of five animals from each group

were taken at intervals of 50 mm, and mounted on slides. The total number of

sections analyzed was 15–20 per ovary. Routine hematoxylin-eosin staining

was performed for histological examination under a light microscope. Sections

from each ovary were digitized using a video camera coupled to a light micro-

scope with a final magnification of�400 for primordial and primary follicles

and of �100 for preantral, antral, and Graafian follicles as well as corpus

luteum. Photographs of ovarian follicles were analyzed using Image Pro

Plus for Windows (version 1.3.2; Media Cybernetics, Bethesda, MD) (51). Fol-

licle types in ovarian cross sections were defined as follows: primary follicles

consisted of an oocyte surrounded by a single layer of cuboidal granulosa cells,

preantral follicles comprised an oocyte surrounded by two or more layers of

granulosa cells with no antrum, and antral follicles were distinguished by the

presence of an antrum within the granulosa cell layers enclosing the oocyte

(58). To avoid double counting, in the growing class, only those follicles that

showed the nucleus of the oocyte were counted, and in the antral class, the fol-

licles were compared with previous sections. The corpora lutea, which are in

fact postantral follicles, were counted in the same way as the follicles in the an-

tral class. In addition, the vascular density of follicles was assessed. All vessels

in the sections of the whole follicular theca interna were counted under�400

magnification.
RNA Extractions
Total RNA from ovary tissue was extracted using TRIZOL reagent (Invitro-

gen, Carlsbad, CA) according to the manufacturer’s protocol. Briefly, ovaries

were homogenized in 1 mL of TRIZOL reagent per 50–100 mg of tissue.

Then RNA was extracted by a phenol/chloroform solution and precipitated

by isopropyl alcohol. After washing with 75% ethanol, the RNA was dried

and dissolved with diethyl pyrocarbonate–treated water. The quality of

RNA samples was verified by determination of the ratio 260 nm/280 nm

and by electrophoresis on a 1% agarose gel. The samples were stored at

�80C until use.
Semiquantitative RT-PCR
All RNA samples were rid of contaminating DNA by using DNAse-free

reagents (Invitrogen) according to the manufacturer’s protocol. Then 1 mg

of RNA sample was used in a 20-mL cDNA reaction using oligo-dT and

the superscript III cDNA synthesis system (Invitrogen) according to the man-

ufacturer’s protocol. PCRs were prepared using the equivalent of 2 mL cDNA

per 50 mL reaction (triplicate) for each respective primer set using PCR

reagents and platinum Taq polymerase (Invitrogen). To quantify VEGF,

bFGF, FGFR, Flt-1, and KDR transcripts, we determined the optimal number

of amplification cycles for each gene (Fig. 1).

The applied PCR primers used are the following: bFGF (sense: 50-gaaccgg-

tacctggctatga-30; antisense: 50-ccgttttggatccgagttta-30), VEGF (sense: 50-
gcccatgaagtggtgaagtt-30; antisense: 50-actccagggcttcatcatt-30), FGFR (sense:

50-ctctgtggtgccttctgaaca-30; antisense: 50-ttcacctcgatgtcttcag-30), KDR

(sense: 50-ccaagctcagcacacaaaaa-30; antisense: 50-ccaaccactctgggaactgt-30),
and Flt-1(sense: 50-tttatcagcgtgaagcatcg-30; antisense: 50-ccgaatagcgagca-

gatttc-30). Thermocycling conditions were the same for all genes (2 minutes
Vol. -, No. -, - 2009
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FIGURE 1

Optimization of RT-PCR conditions for semiquantitative determination of target mRNAs. For amplification in the exponential phase of PCR,

different numbers of cycles were tested for each message. Quantitative analysis of the cycle dependency for the generated PCR signals
revealed a strong linear relationship among cycles 28–40 in the case of FGF (correlation coefficient¼ 0.9774), FGFR (correlation coefficient¼
0.9763), VEGF (correlation coefficient¼ 0.7511), Flt-1 (correlation coefficient¼ 0.9902), and KDR (correlation coefficient¼ 0.9720). The arrow

indicates that the cycle number was chosen for each gene.
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of initial denaturation at 94C, 1 minutes of additional denaturation at 94C, 1

minute of annealing at 55C, 1 minute of extension at 72C). The number of

cycles for each gene is shown in Figure 1. All amplified cDNA fragments

were run on a 1.5% agarose gel stained with ethidium bromide visualized

under UV transillumination and analyzed with the Image J software. In

addition, to provide an appropriate internal control, coamplification of

a 450-bp fragment of the GAPDH mRNA was carried out in each sample

using the primer pair (sense: 50-accacagtccatgccatcac-30; antisense: 50-tccac-
Fertility and Sterility�
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caccctgttgctgta-30) at the thermocycling conditions of 3 minutes of denatur-

ation at 94C, 30 seconds of additional denaturation at 94C, 2 minutes of

annealing at 58C, and 2 minutes of extension at 72C.
Steroid Determinations
The E2 and T serum concentrations were determined by a specific radioim-

munoassay for each hormone (ICN Pharmaceuticals, Inc., Costa Mesa,
3
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FIGURE 2

Food consumption (panel A), body weight (panel B), and linear growth (panel C) in the control (C) and protein-energy restricted (PER) groups.

Values are given as mean � SEM of 14 animals per group.
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CA). The intra- and interassay variation coefficients were 4.6% and 7.5% for

T and 6.4% and 5.9% for E2. The sensitivity of the radioimmunoassay was

0.04 ng/mL for T and 0.8 pg/mL for E2 (59).

Statistical Analysis
All results are mean� SEM. Statistical analysis was performed by Student’s

t-test. P<.05 was considered statistically significant.

RESULTS
Figure 2 shows the food consumption, body weight, and linear
growth of the C and PER. Compared with the C, the PER had a sig-
nificant decrease in food consumption (P<.001) from weaning to
day 60, with an additional reduction after day 80 to the end of the
experiment (Fig. 2A). There was a significant decrease in the PER
body weight from day 4 to day 60 (P<.005; Fig. 2B). The PER
group had also a significant decrease in linear growth from day 4
to day 60 (P<.0001; Fig. 2C).

The offspring whose dams were submitted to protein-energy-re-
stricted diets during lactation presented a reduction in the number
of all ovarian follicles per section: primordial (C ¼ 6.60 � 0.24,
PER ¼ 5.20 � 0.20; P<.01), primary (C ¼ 5.80 � 0.66, PER
¼ 4.00 � 0.31; P<.04), preantral (C ¼ 3.00 � 0.44, PER ¼ 2.08
� 0.48), antral (C ¼ 4.74 � 0.72, PER ¼ 3.40 � 0.77), Graafian
(C ¼ 2.18 � 0.29, PER ¼ 1.08 � 0.37; P<.05), and corpus luteum
(C ¼ 3.98 � 0.65, PER ¼ 3.36 � 0.27).
4 Ferreira et al. Maternal diet and ovary programming
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The offspring whose dams were submitted to protein-energy-re-
stricted diets during lactation presented a reduction in the vessel
density of follicles (C¼ 17.26� 2.30, PER¼ 9.96� 0.97; P<.01).

Ovarian sections of offspring are shown in Figures 3 and 4. The
primordial follicle consists of an oocyte surrounded by a single layer
of relatively undifferentiated granulosa cells (Fig. 3A). Primary fol-
licles consist of an oocyte surrounded by a single layer of cuboidal
granulosa cells (Fig. 3A). The preantral follicles present a central
oocyte surrounded by several layers of granulosa cells and bounded
by thecal cells, which form a fibrous theca externa and an inner theca
interna with no antrum. In antral follicles, fluid appeared between
the granulosa cells, and the drops coalesced to form follicular fluid
within the follicular antrum (Fig. 3B). In Graafian follicles, the fol-
licular antrum is clearly developed, leaving the oocyte surrounded
by a distinct and denser layer of granulosa cells, the cumulus oopho-
rus. The corpus luteum is formed by luteal cells and abundant capil-
laries (Fig. 3C).

Figure 4 represents the vessels, considering arterial, capillary, or
venous counted inside the theca layer of preantral, antral, and Graa-
fian follicles.

The T (ng/mL) serum concentration was not detected in either
group. E2 (pg/mL) serum concentration did not show statistical differ-
ence between the C and PER (C¼ 125.4� 20.4, PER¼ 116.6� 16.2).

A protein-energy maternal restricted diet did not change the
mRNA bFGF (C ¼ 0.34 � 0.03, PER ¼ 0.36 � 0.04) and VEGF
Vol. -, No. -, - 2009
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FIGURE 3

Photomicrographs showing ovaries from female rats in the control (C) and protein-energy restricted (PER) groups. (A) Primordial follicles [1];

primary follicles [2]. (B) Preantral follicles [3]; antral follicles [4]. (C) Graafian follicles [5]; corpus luteum [6]. Magnification, A¼�400; B¼�100;
C ¼ �40.
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FIGURE 4

Photomicrographs showing ovaries from female rats in the control (C) and protein-energy restricted (PER) groups. (A) Preantral follicles. (B)

Antral follicles. (C) Graafian follicles. The arrow indicates vessels counted in the theca layer of follicles. The image magnification is �400. The
inset magnification is �200.
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(C ¼ 0.81 � 0.04, PER ¼ 0.79 � 0.11) expression in ovaries. How-
ever, there was a significant decrease in the mRNA FGFR (C¼ 0.34
� 0.05, PER ¼ 0.13 � 0.05; P<.03), Flt-1 (C ¼ 0.28 � 0.05, PER
¼ 0.12� 0.02; P<.05), and KDR (C ¼ 0.22� 0.04, PER¼ 0.09 �
0.01; P<.04) expression in ovaries (Fig. 5).
DISCUSSION
Epidemiological data and studies in animals have focused on the
concept of metabolic programming, which specifies that the quantity
and quality of nutrition in the perinatal period generate consequences
in adulthood (45, 51, 53, 55, 60). Restricting food during the perina-
tal period is associated with a reduction in growth rate. The present
results of low body weight and linear growth are in agreement with
the literature (49–53, 61–63). It seems that changes in body weight
6 Ferreira et al. Maternal diet and ovary programming
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and linear growth are associated with food intake, since the reduction
in food intake was accompanied by a reduction in body weight and
linear growth up to 60 days of age. After this period, there was a nor-
malization of consumption, body weight, and growth. However, at
about 80 days, there was an additional reduction in food consump-
tion, which was not accompanied by changes in body weight or lin-
ear growth. The evaluation of these parameters for a longer period is
needed to confirm whether this last change in food consumption
would be accompanied by changes in body weight and linear growth.
It was recently demonstrated that male rats, whose mothers were
submitted to the same experimental protocol, showed a reduction
in body weight up to 180 days of age, despite the fact that food con-
sumption had normalized around day 50 (60).

Follicular development with adequate maturation of primordial fol-
licles to the mature stage of the Graafian follicle is essential for
Vol. -, No. -, - 2009
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FIGURE 5

Expression of VEGF (A), bFGF (B), Flt-1 (C), FGFR (D), and KDR (E) genes in ovaries of the control (C) and protein-energy restricted (PER)

groups. After RT-PCR reactions, the amplified fragments were run on a 1.5% agarose gel and visualized by UV transillumination. Panel F
shows a representative ethidium bromide–stained gel depicting products for expression of VEGF, bFGF, FGFR, Flt-1, KDR, and GAPDH

genes in ovaries. The ratios between the signal intensities (arbitrary units) of VEGF, bFGF, FGFR, Flt-1, and KDR are represented as means�
SEM of five animals per group. Different letters mean statistical significance.
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releasing the oocyte and maintenance of female fertility. In rodents, the
primordial follicles are formed by day 3 of age, and the first wave of
follicles develops into antral follicles over the next 3 weeks (64–66).
In agreement with the literature (55, 67, 68), our study showed that dur-
ing this period, the PER group presents significant alterations in body
weight. In addition, thyroid function and milk composition are altered
at this time (55, 67, 68). Thus, it is possible that the decrease observed
in primordial follicles number could result from a direct action of mal-
nutrition in the ovaries of the pups in the first days of life when primor-
dial follicles are being formed. A reduction in the developing follicles
number is also shown after maternal malnutrition during lactation,
suggesting that a developmental effect exists.

Angiogenesis plays an important role in follicular development.
The capillary network in dominant follicles is both more extensive
and more permeable than that in other follicles (69), and such folli-
cles are able to acquire an increased uptake of serum gonadotropins,
a variety of hormones, and growth factors (70). The capillary net-
work limited to the thecal cell layer during follicular development
is stimulated by angiogenic factors (71). VEGF and FGF have
been characterized as potent promoters of angiogenesis (3–5).
Fertility and Sterility�
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VEGF may also have direct mitogenic effects on granulosa cells
in vitro and could directly stimulate follicle growth in the rat ovary
(72). Evidence has been reported that bFGF is able to induce primor-
dial follicles to initiate development (29). Therefore, we could
hypothesize that any alteration of the angiogenic factors receptors
expression could lead to a reduction in the follicular growth and/
or maturation process.

Several investigators have demonstrated a primary role of VEGF in
corpus luteum angiogenesis by neutralizing VEGF activity (73–75).
Despite the production of other angiogenic factors, neutralization of
VEGF activity prevented normal development and function of the cor-
pus luteum. Neutralization of VEGF activity with neutralizing anti-
bodies (76) or a soluble form of the VEGF receptor (30) disrupts
follicle growth and granulosa cell proliferation in monkeys.

All evidence showing VEGF and FGF to be responsible for angio-
genesis and follicular growth suggests that the reduction of VEGF
and FGF mRNA receptors expression after maternal malnutrition
during lactation could be responsible, at least in part, for the reduction
in follicle growth. This effect may be the consequence of the direct
action of both factors in the follicular development. A reduction in
7
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the vascularity could also be responsible for the reduction observed in
the follicular development, probably by decreasing the delivery of
folliculotrophic substances. Despite the presence of VEGF and
FGF from primordial to antral follicles (12, 13, 19–21), their recep-
tors are expressed only in the theca cells of late secondary follicles
(30). Therefore, the reduction in the VEGF and FGF receptors ex-
pression after maternal malnutrition could be related to the growing
follicles and not to primordial follicles. The absence of theca cells in
the primordial follicles reinforces the hypothesis of a direct action of
malnutrition in the first days of life when the primordial follicles are
being formed.

It has been shown that both the growth factors VEGF and FGF
and their receptors are regulated by gonadotropins (33, 34) and E2

(35, 77, 78). Also, it seems that the expression of Flk-1/KDR
mRNA is significantly increased in the VEGF-injected ovaries
when compared with those of the saline groups (16). The unchanged
E2 serum levels could explain the normal expression of both VEGF
8 Ferreira et al. Maternal diet and ovary programming
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and bFGF, but it is possible that it is not related to the reduction of
growth factors receptors expression. Thus, the normal expression of
both VEGF and bFGF factors, besides the reduction of the VEGF
and FGF receptors expression, raises the possibility that some regu-
latory step is missed in the ovary after maternal malnutrition during
lactation.

Our results suggest that maternal malnutrition during the lacta-
tion program affects follicular development, which is probably
related to a reduction of VEGF and FGF mRNA receptors expres-
sion. This effect could be the consequence of a direct action of
both factors in follicular development or it could be due to a vascu-
lature reduction, resulting in a decreased delivery of folliculotrophic
substances in the PER animals.
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